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6.1 (Naturality of the exponential map). Let (M, grq) and (N, gn) be smooth Riemannian manifolds
and let ® : M — N be an isometry. For any p € M, prove that the following diagram is
commutative:

dp®
TpM L> Tqy(p)N

lexpp lequ)(p) (1)

M—2 N

Solution. We will first show that, if VM) and VW) are, respectively, the Levi-Civita connections of
the metrics gy and gy, then ® “commutes” with covariant differentiation, i.e. for any X,Y € ['( M),
we have

5.(TE0Y) = V(@)

where @, (W) = d®(W) denotes the push-forward via the differential of . The above is equivalent
to the statement that, for any X, Y, Z € '(M): X, Y € T(M) and W € ['(N):

9N<<1>*(V§?A) )aW> = 9N<V51>A*@((¢’*Y),W>7
which, since ® is an isometry, can be reexpressed as follows (for W = ®,Z for any Z € D(M)):
I (vﬁ?“y, Z) . (vg;(é*y), <I>*Z>. 2)
In order to show (2), we will use the formula of Koszul
2g(VoV, W) = U(g(V,W))+V (9(U, W) = W (g(U,V)) (3)
—g(V,W,U) = g(IlU. W] V) +g([U. V], W)

expressing the Levi-Civita connection V in terms of the corresponding metric g and use the fact that
an isometry between two Riemannian manifolds should preserve the corresponding expressions for
V. More precisely, using (3) for (¢, U, V,W) = (gm, X, Y, Z) and (g, U, V, W) = (gn, . X, DY, 9. 7)
and noting that the corresponding right hand sides are equal since ® is an isometry,! we infer that
the left hand sides should also be the same (and thus (2) holds).

For any p € M and v € T, M, let 7,, be the maximal geodesic of g satisfying 7, ,(0) = p and
Ypw(0) = v (recall that the exp, map satisfies exp,(v) = 7,,,(1)). We will use the notation 7 for the
respective geodesics on (N, gy). The commutativity of the diagram (1) is then equivalent to the
statement that, for any p € M and v € Ty)M:

@ (1p,0(1)) = Fap)@.) (1).

The above statement will follow if we show that the curve

F=Pov,

'Here, we also use the fact that, more generally, for any smooth map ® : M — N, ®,([X,Y]) = [®.X,®,Y] and
(2. X)(f) = X(f o ®).
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is a geodesic of (N, gy) satisfying
7(0) = &(p) and 5(0) = P.v (4)

(since, in this case, the uniqueness theorem for the initial value problem for the geodesic equation
would imply that ¥ = J¢(y).0.()). The relations (4) follow easily from the definition of 7; thus, it
remains to show that 7 is a geodesic, i.e.

3 =0.

<
=

2

We can readily compute using (2):

N) =~ N . .
V; )7 = V( ) ((I)*’Vp,v) =, (V(M)Vp,v> =0

D Apv o

(since 7, is a geodesic).

6.2 Let (M, g) be a smooth connected Riemannian manifold.

(a) Suppose that 1, Py : M — M are two isometries such that, for some p € M:
(I)l(p) = (I)Q(p) and dpq)l = dp®2.

Prove that ®; = ®,.

(b) Let X € I'(M) be a Killing vector field of (M, g) for which there exists a point p € M
such that
X|, =0, VX|,=0.

Prove that X = 0.

Solution. (a) Let £ C M be the set of points ¢ € M such that ®,(¢) = ®2(q) and d, @ = d,P».
We want to show that K = M. To this end, since M is connected, it suffices to show that K is a
non-empty, open and closed subset of M. Since p € K, we already know that K # (); moreover, since
®,, ®, are smooth maps, K is a closed set. Therefore, it only remains to show that K is an open
subset of M. Without loss of generality, we will assume that

(I)QIId

(since, otherwise, we can compare the maps ®; o ®,' and Id in place of ®; and ®,).
Let ¢ € K and v € T; M be such that v belongs to the domain of definition of exp,. Using Ex. 6.1,
the assumption that ®; is an isometry of (M, g) implies that

@1(equ(v)) = eXPg, (o) (dqél(v)).

Our assumption that ¢ € K (and @, = Id) implies that ®,(¢) = ¢ and d,P;(v) = v; therefore,

Py (exp,(v)) = exp,(v).
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Therefore, we infer that
®1(z) = z for all z in the image of exp, : Q, C LM — M.
In view of the fact that exp, is a local diffeomorphism around 0 € T, M, we deduce that
®,(z) =z for all z in an open neighborhood U of gq.

As a consequence, d,®; = Id for all z € U and, therefore, Y C K. Since K contains an open
neighborhood around each of its points, we infer that I is an open subset of M. Thus, K = M.

(b) Let us define similarly as before IC to be the subset of M on which X =0 and VX = 0; since
K is clearly non-empty (p belongs to K) and closed (since X is a smooth vector field), it suffices to
show that K is open.

Let ¢ be a point in K and let ¢ be an open neighborhood of ¢ in M and ¢ > 0 such that the flow
map O, : U — M of X is defined for t € (—6,6). Recall that that, for any z € U, the integral curve
t — ®4(2) of X is the unique solution of the initial value problem

e

Moreover, @, is a semigroup in the following sense: For any t1,ty € (—9,d) such that t; +t5 € (—0,0)
and any z € U, we have

D11, (2) = iy (P, (2)) = iy (P, (2)). (6)

Using the formula for the derivative of the composition of two functions, we can compute that the
differential of ®, satisfies for any z € & and v € T, M:

dZ(I)tlthz( ) - dq)z (I)tl (d (I)tz( )) (7)

Note also that our assumption that X is Killing is equivalent to the statement that &, : Uf — ®,(U) C
M is an isometry for all ¢t € (—0,9).
Since X |, = 0, we deduce that

®,(q) =q forallte (—0,9)

(it is easy to check that the constant curve t — ¢ satisfies (5)). Therefore, the pushforward map
dy®; = (®4).], maps T, M to T,M. Using the definition of the Lie derivative of X, we can readily
calculate that, for any Y € T'(M):

LxYl], = lim ( (P (Ya,(g) — Y|q)>

(da
tim (4@ (¥],) ~ V1,))
(j( D))V,
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Recall that LxY = [X,Y] = VxY — Vy X (the last equality following from the fact that the Levi-
Civita connection of g is torsion-free). Since ¢ € K and, therefore, X|, = 0 and Vy X|, = 0, we infer
that LxY|, = 0 and, thus,

(%(dqq)t) ’t:O)U =0 forallveT M. (8)

Using the identity (7) for z = ¢, we obtain (since ®;,(q) = q):
dqq)tﬁ-tz (U) = dqq)h (dq@tz (U))

Differentiating the above relation with respect to ¢; and then setting ¢; = 0 and ¢, = ¢, we obtain
for any t € (—9,6) and v € T,M:

% (dqq)T) |r=t(v) = % (dqq)7> =0 (dqq)t(v))'

Therefore, using (8) for the right hand side, we infer that, for any ¢ € (—4,0):

(L @@)| _)e=0 forallveT,m

Therefore, integrating the above equation in ¢ and using the fact that d,®, = Id, we obtain
d,®; =1d for all t € (—9,0)

Therefore, in view of the fact that &, : Y — ,(U) C M is an isometry, arguing as in the proof of
part (a) (namely noticing that the image of the exponential map exp, is fixed under the action of
®,) we infer that ®;(z) = z for z in an open neighborhood V of ¢ for all t € (=9, ). Therefore, the
vector field X also vanishes on V), proving that V C K. Therefore, K is open.

6.3 Let (M, g) be a connected Riemannian manifold, and let N C M be a smooth submanifold of
M.

(a) For any p € M, we will define the distance of p from N to be
d(p,N') =inf {{(7) : v :[0,1] = M is a C' curve, v(0) = p, (1) € N'}.

Assume that, for a given p € M, a minimizer for d(p, N) exists, i.e. there exists a C*
curve 7 : [0,1] — M such that v(0) = p, v(1) = ¢ € N and

((y) = d(p,N).

Show that 7 is a geodesic of (M, ¢g) and (1) is normal to T,N .
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(b) Let g1, g2 be two points on N and let 7 : [0,1] — A be a C' curve such that v(0) = ¢,
(1) = g and £(7y) is minimal among all curves connecting ¢; to ¢z in N, i.e.

((y) =min {£(7) : 7:[0,1] = N, 7(0) = q1, 7(1) = g2}
Prove that, for any t € [0, 1], there exists a parametrization of 4 for which
V17(t) is orthogonal to TN C TyumM
(where V is the Levi-Civita connection of (M, g)).

Solution. (a) By reparametrizing the curve 7, we can assume without loss of generality that ||| is
constant in t. Let ¢ : [0,1] = M, s € (=4, 0) be a smooth variation of y (i.e. ¢o(t) = v(t)) such that

s(0) = v(0) = p and ¢,(1) € N for all s € (—0,5). Let also X = 90s be the variation vector
Os
s=0
field along 7. Note that our assumptions on ¢, imply that

X’t:O =0 and X|t:1 € Tfy(l)./\/’

Moreover, our assumption that v minimizes the length among all curves connecting ¢ to N implies
that

d
— (s = 0.
ds (¢ )|s:0

Using the formula for the variation of the length, we obtain:

ﬁ(g(X,"V(t))E:o - /Olg(X, Vﬂfy) dt) =0

and, therefore (since X|;—o = 0):

9(X[ier 4(1)) — /0 9(X,V:4) dt = 0. (9)

In order to show that Vs% = 0 and §(1) L TN, we will use two different kinds of variations:

1. For any smooth variation ¢ satisfying ¢s(1) = (1) for all s € (=0, ) (and, therefore, X |- =
0), the relation (9) gives:

1
/ 9(X,V:4) dt = 0.
0

As we mentioned in class any smooth vector field X along v with X|;—¢ = 0 and X|;—; = 0 can
be written as the variation vector field at s = 0 of a smooth variation ¢, of 7 fixing v(0) and (1)
(this can be easily checked in local coordinates). Therefore, if x : [0, 1] — [0, +00) is a smooth
function with x(0) = x(1) = 0 and x(t) > 0 for t € (0,1), choosing X (t) = x(¢t)V4u)¥(t) we
obtain

1
| XVl =o
0
i.e. (since ¥ is smooth) that v is a geodesic:

V.4 =0. (10)
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2. Let £ € T,(yN. We can extend (in a non-unique way) & to a vector field X along v with
X|i=o = 0 and such that X is supported only inside a neighborhood U of v(1) covered by a
coordinate chart. Tt is easy to see (by transfering this problem on R™ via the local cooridnates
on U) that such an X can be expressed as the variation vector field of a smooth variation ¢, of
7 satisfying ¢(0) = v(0) and ¢4(1) € N (with aqsa;(l)hzo = &). Therefore, applying the relation
(9) and using (10) for the second term, we obtain

Since this is true for any & € T, (), we infer that ¥(1) L T,y

(b) Let us reparametrize v, as before, so that ||¥(t)|| is constant in ¢ € [0, 1]. Our aim is to show
that, with this parametrization, we have for any ¢, € (0,1) and any & € T, N:

9(&, Vi i(to)) = 0. (11)

Let ¢ : [0,1] = N, s € (—0,d) by a smooth variation of v through curves that lie inside N/,
satisfying in addition

¢s(0) =7(0) and (1) =~(1).

Our assumption that v minimizes the length among such curves implies that

d

75 =0.

s=0

If X = % .o Is the associated variation vector field along v, the formula for the variation of the
length of v becomes in this case:

/lg(X, Vi) dt = 0. (12)

As before, we can easily see (by working, for instance, in local coordinates around each point in 7)
that, for any smooth vector field X along + that satisfies

Xlyoy =0, X|,ay=0 and X|,i) € Ty, (13)

there exists a (non-unique) smooth variation ¢ : [0,1] — N, s € (=4, d) of ~ satisfying ¢4(0) = ~(0)
and ¢4(1) = v(1). Therefore, (15) is true for any vector field X along v satisfying (13).

We will now proceed to show that (15) implies that V4 is orthogonal to A. Assume, for the
sake of contradiction, that there exists a ¢ty € (0,1) and a & € T, )V such that

g<£7 v”y;}/‘t:tg) # 0.

Without loss of generality, we can assume that

g(ga v"Y’Ht:to) > 0. (14)

Let Y be a smooth vector field along v which is an extension of £ (i.e. Y|y, = &) and which is
tangent to N (i.e. Y|y € Ty for all t € [0,1]). Let ¢ : [0,1] — [0,+0c0) be a smooth cut-off
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function satisfying 1(to) = 1 and such that the support of ¢ is inside a small enough neighborhood
of ty so that
gY@, V44(t)) > 0 for all t € suppy)

(this is possible in view of (14) and the fact that Y and V7 are continuous vector fields along ).
Let us define the vector field X along v by

Xy = )Y [0

Notice that X satisfies (13). Moreover, since ¢ > 0 and ¥(tg) = 1 > 0, the above condition implies
that

/1 9(X,V45) dt >0 (15)
which is a contradiction in view of (15). 0Therefore,
Viy(t) L TywN  forall t € (0,1)
which, in view of the continuity of V;¥, implies that V4(t) is orthogonal to T,y N for all ¢t € [0, 1].

6.4 (a) Let (H? gyn) be the Poincare half plane (see also Exercise 5.2): H* = {(z,y) € R?: y > 0}

and
da? + dy?
=
Yy
Let also D? be the unit disc in R?, equipped with the metric
dx? + dy?
go = .
(1 —x?— y2)2
Identifying R? with C, show that the map ® : D? — H? given by
z+1
®d(z) = —i
(2) = —i—

is an isometry ((D?, gp) is known as the Poincaré disc; both (H? gy) and (D?, gp) are
models for the hyperbolic plane).

(b) Let p be a point in the hyperbolic plane. Compute the metric in polar coordinates around
p. (Hint: Working in the Poincaré disc model, it suffices to only consider the case when
p is at the origin, since any point p € D? can be mapped to any other point in D? via an
isometry. What are the geodesics in (D?, gp) emanating from the origin?)

(c) How is the round metric (5%, gs2) expressed in polar coordinates around a point p € 52?7

Solution. (a) It is easy to check that the map ® : D* — H?, (z,y) — (Z,79) = <(x_12)y2+y2, é:f;{f;)

is 1-1, onto and bi-continuous. Moreover, we can calculate
dz? + d372>

(I)*g[H = CD*< y2
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_ ()] + o))

(
N 1—22—92 2
((I*1)2+y2)

_ 1 2 B 4y o i 5
! <<—H;sz>2 <[(x e (o} Rl (2 = 1)da + ydy)]
2 2(1 — 2% — y?) 2
+ [— =121y (zdx + ydy) — (CESERnE ((z — 1)dz + ydy)] >
_ 1 4(dz?* + dy?)
() (@ P
CESyLEwY

Therefore, ® is an isometry.

(b) As we saw in Exercise 5.2, the set of isometries of (H?, gn) contains all maps of the form
z— %, ad — be > 0; therefore, for any p;, p» € H?, there exists an isometry F: (H?, g) — (H?, gi)
such that F(p;) = pa (i.e. (H?, gy) is homogeneous). As a result, the metric gy expressed in polar
coordinates around a point p € H? will have the same form independently of the chosen point p. For
this reason, we can choose to work with the point corresponding to the origin in (D?, gp).

Let us use the notation (z,y) and (7,0) for the standard Cartesian and radial coordinates, re-
spectively, on R? (so that 7> = 22 + y* and tanf = £). In the (z,y) coordinate system, the tangent

i)

vectors e; = 5| and e; = a% constitute an ortnormal basis of T,D? with respect to gpl, (since
p p

(9p)ijlp = 0ij). Therefore, we can use the coordinates on T,D? with respect to (e, es) to construct a
normal coordinate system in a neighborhood of p = (0,0) in (D? gp) via the map exp,; we will use
the notation (x!,2?) for this coordinate system and (r, ) for the associated polar coordinates (so

that 72 = (21) + (2%)? and tan § = Z). Notice that, since e; = a%‘ and ey = 8% , we have
p p
0 0 0 0
—| =—| and —| =—|. (16)
8x1 P ox P 8[1)2 P 8y p

Moreover, in the (r, 0) coordinate system, the curves § = const correspond to geodesic rays emanating
from p. Recall that, as we saw in class, the metric gp in polar coordinates takes the form

go = dr® + (b(r, 0))7d6?,
with lim, o b(r,#) = 0 and lim,_,q @ = 1. Our aim is to express r, § as functions of the background
coordinates 7,0 on D? C R? and compute b(r, ). To this end, we want to make use of the fact that
(D?, gp) expressed in the (7,0) coordinate system is rotationally symmetric to infer that § = # and
that 7 and b are functions only of 7 (and not of #). Even though this statement should be intuitively
clear, let us try to set up this argument in detail.
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It is easy to verify that the geodesics of (D? gp) emanating from the origin are straight line
segments in D2, Therefore, the curves {# = const} are the same as the curves {f = const}, i.e. § =
0(7,0) is a function only of . We will now show that this implies that § = #: The condition (16)
implies that the Jacobian matrix of the transformation matrix (z,y) — (Z,y) satisfies

amxl azx2 (zy)—0,0) [1 O
Ozt Oya? 0 1[°

Thus, using the fact that 6 = Arctan(i—f) and 6 = Arctan(¥), we infer that

hmz =1.
7—0 @

The fact that 6 = (0) then implies that
0_0

We will now seek an expression for » = 7(7,6). Recall that the point ¢ in (D?, gp corresponding
to the polar coordinate pair (r,#) is simply

q = exp, (r cos fe; + rsin 062).

In particular, for any p > 0, the set {r = p} in D is the images under exp, of the set S,Sp) ={v=
(vh,v?) € T,D*: (vh)? + (v?)? = p*} (where (v',v?) are the coordinates of v in the orthonormal basis
{e1,ea} = {0:lp,0,lp}). The following observation is crucial: In the (7,6) coordinate system, the
metric gp takes the form A

9o = m(d?2 +7df), (17)
i.e. the coefficients of the metric are independent of 0, hence the rotations ®y : (7,0) — (7,0 + \)
are isometries for gp. Using the fact that isometries map geodesics to geodesics (see Ex. 6.1), and
d,|, maps S, to S,, we infer that, for any p > 0, the set {r = p} is invariant under the rotations
®,, A € R. Since these rotations also leave the circles {F = const} invariant, we infer that the curves
{r = const} and {7 = const} are the same, i.e. r is a function only of 7. Therefore, since r = r(7)
and @ = 0, in the (r,0) coordinate system the isometries ®, also take the form (r,0) — (1,0 + \); we
deduce that, in the polar (r,#) coordinate system, the coefficients of gp should be independent of 6,
i.e. that b is a function only of r. Thus, we have the following expressions for gp in the coordinate
systems (r,6) and (7,0) = (7, 0):

dr

go = dr® + (b(r)*d0* = (G5)"dr* + (b(r))"d0*

and, in view of (17):
4 2 | =212
gp = m(d'l" +7r db )
We therefore infer that
dr 2 _
=—— and b(r(r) =

ar 1 — 72

2r
1 —r?
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from which we obtain L+7
r(7) = log <1—7:> and  b(r) = sinh(r).
-7

Thus, in polar coordinates (r,0) around p = (0,0), gp takes the form:
gp = dr® + (sinhr)df?>.

Notice that (r,0) € (0,400) x [0,27) covers all of D?\ 0.

(c) As in the case of the hyperbolic plane, the round sphere (52, gs2 is homogenenous and, there-
fore, the metric expressed in polar coordinates around a point p € $? will have the same form
independently of the choice of p; we can therefore choose p to be the north pole N). Recall that, in
stereographic coordinates from N (which parametrize 5% \ S by point on the plane R?, see Ex. 2.3),
the round metric gg2 takes the form

4

ot a g & T )

gs2 =

(wih (2,y) = (0,0) corresponding to p and 22 + 3> — +oo corresponding to N). In particular,
switching to radial coordinates (7,6) on R? we have

gg2 — m (d'fQ ‘I‘ deéQ) . (18)

We immediately notice that geodesics emanating from p correspond, in the above coordinate system,
to straight lines # = const and that the metric gg2 is invariant under rotations (7,0) — (7,0 + ).
Therefore, arguing exactly as in the case of the hyperbolic plance, we infer that the polar coordinate
system (r,#) around p satisfies § = § and r = 7(7) and that b(r,0) is a function of r only, i.e.

g2 = dr® + (b(r))*db>.

Comparing the above expression with (18), we deduce that

dr 2 2r

e d br(F) = ——

a1+, M (r(v)) 1472
i.e. that

r(7) = 2arctan’ and b(r) = sin(r).
Thus,

gs2 = dr? 4 sin® rdf?
and (r,0) € (0,7) x [0,27) covers 5%\ {N, S}

Remak. Notice the analogy with the corresponding expression for the hyperbolic metric.

Page 10



