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6.1 (Naturality of the exponential map). Let (M, gM) and (N , gN ) be smooth Riemannian manifolds
and let Φ : M → N be an isometry. For any p ∈ M, prove that the following diagram is
commutative:

TpM TΦ(p)N

M N

dpΦ

expp expΦ(p)

Φ

(1)

Solution. We will �rst show that, if ∇(M) and ∇(N ) are, respectively, the Levi-Civita connections of
the metrics gM and gN , then Φ �commutes� with covariant di�erentiation, i.e. for any X, Y ∈ Γ(M),
we have

Φ∗
(
∇(M)

X Y
)
= ∇(N )

Φ∗X
(Φ∗Y ),

where Φ∗(W ) = dΦ(W ) denotes the push-forward via the di�erential of Φ. The above is equivalent
to the statement that, for any X, Y, Z ∈ Γ(M): X, Y ∈ Γ(M) and W ∈ Γ(N ):

gN

(
Φ∗
(
∇(M)

X Y
)
,W
)
= gN

(
∇(N )

Φ∗X
(Φ∗Y ),W

)
,

which, since Φ is an isometry, can be reexpressed as follows (for W = Φ∗Z for any Z ∈ Γ(M)):

gM

(
∇(M)

X Y, Z
)
= gN

(
∇(N )

Φ∗X
(Φ∗Y ),Φ∗Z

)
. (2)

In order to show (2), we will use the formula of Koszul

2g
(
∇UV,W

)
= U

(
g(V,W )

)
+V
(
g(U,W )

)
−W

(
g(U, V )

)
(3)

− g
(
[V,W ], U

)
− g
(
[U,W ], V

)
+ g
(
[U, V ],W

)
expressing the Levi-Civita connection ∇ in terms of the corresponding metric g and use the fact that
an isometry between two Riemannian manifolds should preserve the corresponding expressions for
∇. More precisely, using (3) for (g, U, V,W ) = (gM, X, Y, Z) and (g, U, V,W ) = (gN ,Φ∗X,Φ∗Y,Φ∗Z)
and noting that the corresponding right hand sides are equal since Φ is an isometry,1 we infer that
the left hand sides should also be the same (and thus (2) holds).

For any p ∈ M and v ∈ TpM, let γp,v be the maximal geodesic of gM satisfying γp,v(0) = p and
γ̇p,v(0) = v (recall that the expp map satis�es expp(v) = γp,v(1)). We will use the notation γ̃ for the
respective geodesics on (N , gN ). The commutativity of the diagram (1) is then equivalent to the
statement that, for any p ∈ M and v ∈ TpM:

Φ
(
γp,v(1)

)
= γ̃Φ(p),Φ∗(v)(1).

The above statement will follow if we show that the curve

γ̄
.
= Φ ◦ γp,v

1Here, we also use the fact that, more generally, for any smooth map Φ : M → N , Φ∗([X,Y ]) = [Φ∗X,Φ∗Y ] and
(Φ∗X)(f) = X(f ◦ Φ).
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is a geodesic of (N , gN ) satisfying

γ̄(0) = Φ(p) and ˙̄γ(0) = Φ∗v (4)

(since, in this case, the uniqueness theorem for the initial value problem for the geodesic equation
would imply that γ̄ = γ̃Φ(p),Φ∗(v)). The relations (4) follow easily from the de�nition of γ̄; thus, it
remains to show that γ̄ is a geodesic, i.e.

∇(N )
˙̄γ

˙̄γ = 0.

We can readily compute using (2):

∇(N )
˙̄γ

˙̄γ = ∇(N )
Φ∗γ̇p,v

(Φ∗γ̇p,v) = Φ∗

(
∇(M)

γ̇p,v
γ̇p,v

)
= 0

(since γp,v is a geodesic).

6.2 Let (M, g) be a smooth connected Riemannian manifold.

(a) Suppose that Φ1,Φ2 : M → M are two isometries such that, for some p ∈ M:

Φ1(p) = Φ2(p) and dpΦ1 = dpΦ2.

Prove that Φ1 = Φ2.

(b) Let X ∈ Γ(M) be a Killing vector �eld of (M, g) for which there exists a point p ∈ M
such that

X|p = 0, ∇X|p = 0.

Prove that X = 0.

Solution. (a) Let K ⊂ M be the set of points q ∈ M such that Φ1(q) = Φ2(q) and dqΦ1 = dqΦ2.
We want to show that K = M. To this end, since M is connected, it su�ces to show that K is a
non-empty, open and closed subset of M. Since p ∈ K, we already know that K ̸= ∅; moreover, since
Φ1, Φ2 are smooth maps, K is a closed set. Therefore, it only remains to show that K is an open
subset of M. Without loss of generality, we will assume that

Φ2 = Id

(since, otherwise, we can compare the maps Φ1 ◦ Φ−1
2 and Id in place of Φ1 and Φ2).

Let q ∈ K and v ∈ TqM be such that v belongs to the domain of de�nition of expq. Using Ex. 6.1,
the assumption that Φ1 is an isometry of (M, g) implies that

Φ1

(
expq(v)

)
= expΦ1(q)

(
dqΦ1(v)

)
.

Our assumption that q ∈ K (and Φ2 = Id) implies that Φ1(q) = q and dqΦ1(v) = v; therefore,

Φ1

(
expq(v)

)
= expq(v).
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Therefore, we infer that

Φ1(z) = z for all z in the image of expq : Ωq ⊂ TqM → M.

In view of the fact that expq is a local di�eomorphism around 0 ∈ TqM, we deduce that

Φ1(z) = z for all z in an open neighborhood U of q.

As a consequence, dzΦ1 = Id for all z ∈ U and, therefore, U ⊂ K. Since K contains an open
neighborhood around each of its points, we infer that K is an open subset of M. Thus, K = M.

(b) Let us de�ne similarly as before K to be the subset of M on which X = 0 and ∇X = 0; since
K is clearly non-empty (p belongs to K) and closed (since X is a smooth vector �eld), it su�ces to
show that K is open.

Let q be a point in K and let U be an open neighborhood of q in M and δ > 0 such that the �ow
map Φt : U → M of X is de�ned for t ∈ (−δ, δ). Recall that that, for any z ∈ U , the integral curve
t→ Φt(z) of X is the unique solution of the initial value problem{

d
dt

(
Φt(z)

)
= X|Φt(z),

Φ0(z) = z.
(5)

Moreover, Φt is a semigroup in the following sense: For any t1, t2 ∈ (−δ, δ) such that t1+ t2 ∈ (−δ, δ)
and any z ∈ U , we have

Φt1+t2(z) = Φt1(Φt2(z)) = Φt2(Φt1(z)). (6)

Using the formula for the derivative of the composition of two functions, we can compute that the
di�erential of Φt satis�es for any z ∈ U and v ∈ TzM:

dzΦt1+t2(v) = dΦt2 (z)
Φt1

(
dzΦt2(v)

)
. (7)

Note also that our assumption that X is Killing is equivalent to the statement that Φt : U → Φt(U) ⊂
M is an isometry for all t ∈ (−δ, δ).

Since X|q = 0, we deduce that

Φt(q) = q for all t ∈ (−δ, δ)

(it is easy to check that the constant curve t → q satis�es (5)). Therefore, the pushforward map
dqΦt = (Φt)∗|q maps TqM to TqM. Using the de�nition of the Lie derivative of X, we can readily
calculate that, for any Y ∈ Γ(M):

LXY |q = lim
τ→0

(1
τ

(
dΦτ (q)Φ−τ (Y |Φτ (q))− Y |q

))
= lim

τ→0

(1
τ

(
dqΦ−τ (Y |q)− Y |q

))
=
( d
dt

(
dqΦ−τ

)
|t=0

)
Y |q.
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Recall that LXY = [X, Y ] = ∇XY −∇YX (the last equality following from the fact that the Levi-
Civita connection of g is torsion-free). Since q ∈ K and, therefore, X|q = 0 and ∇YX|q = 0, we infer
that LXY |q = 0 and, thus, ( d

dt

(
dqΦt

)∣∣
t=0

)
v = 0 for all v ∈ TqM. (8)

Using the identity (7) for z = q, we obtain (since Φt2(q) = q):

dqΦt1+t2(v) = dqΦt1

(
dqΦt2(v)

)
.

Di�erentiating the above relation with respect to t1 and then setting t1 = 0 and t2 = t, we obtain
for any t ∈ (−δ, δ) and v ∈ TqM:

d

dτ

(
dqΦτ

)
|τ=t(v) =

d

dτ

(
dqΦτ

)
|τ=0

(
dqΦt(v)

)
.

Therefore, using (8) for the right hand side, we infer that, for any t ∈ (−δ, δ):( d
dτ

(
dqΦτ

)∣∣
τ=t

)
v = 0 for all v ∈ TqM.

Therefore, integrating the above equation in t and using the fact that dqΦ0 = Id, we obtain

dqΦt = Id for all t ∈ (−δ, δ)

Therefore, in view of the fact that Φt : U → Φt(U) ⊂ M is an isometry, arguing as in the proof of
part (a) (namely noticing that the image of the exponential map expq is �xed under the action of
Φt) we infer that Φt(z) = z for z in an open neighborhood V of q for all t ∈ (−δ, δ). Therefore, the
vector �eld X also vanishes on V , proving that V ⊂ K. Therefore, K is open.

6.3 Let (M, g) be a connected Riemannian manifold, and let N ⊂ M be a smooth submanifold of
M.

(a) For any p ∈ M, we will de�ne the distance of p from N to be

d(p,N ) = inf
{
ℓ(γ) : γ : [0, 1] → M is a C1 curve, γ(0) = p, γ(1) ∈ N

}
.

Assume that, for a given p ∈ M, a minimizer for d(p,N ) exists, i.e. there exists a C1

curve γ : [0, 1] → M such that γ(0) = p, γ(1) = q ∈ N and

ℓ(γ) = d(p,N ).

Show that γ is a geodesic of (M, g) and γ̇(1) is normal to TqN .
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(b) Let q1, q2 be two points on N and let γ : [0, 1] → N be a C1 curve such that γ(0) = q1,
γ(1) = q2 and ℓ(γ) is minimal among all curves connecting q1 to q2 in N , i.e.

ℓ(γ) = min
{
ℓ(γ̄) : γ̄ : [0, 1] → N , γ̄(0) = q1, γ̄(1) = q2

}
Prove that, for any t ∈ [0, 1], there exists a parametrization of γ for which

∇γ̇(t)γ̇(t) is orthogonal to Tγ(t)N ⊂ Tγ(t)M

(where ∇ is the Levi-Civita connection of (M, g)).

Solution. (a) By reparametrizing the curve γ, we can assume without loss of generality that ∥γ̇∥ is
constant in t. Let ϕs : [0, 1] → M, s ∈ (−δ, δ) be a smooth variation of γ (i.e. ϕ0(t) = γ(t)) such that

ϕs(0) = γ(0) = p and ϕs(1) ∈ N for all s ∈ (−δ, δ). Let also X = ∂ϕs

∂s

∣∣∣
s=0

be the variation vector

�eld along γ. Note that our assumptions on ϕs imply that

X|t=0 = 0 and X|t=1 ∈ Tγ(1)N .

Moreover, our assumption that γ minimizes the length among all curves connecting q to N implies
that

d

ds
ℓ(ϕs)

∣∣
s=0

= 0.

Using the formula for the variation of the length, we obtain:

1

ℓ(γ)

(
g
(
X, γ̇(t)

)∣∣1
t=0

−
� 1

0

g
(
X,∇γ̇ γ̇

)
dt
)
= 0

and, therefore (since X|t=0 = 0):

g
(
X|t=1, γ̇(1)

)
−
� 1

0

g
(
X,∇γ̇ γ̇

)
dt = 0. (9)

In order to show that ∇γ̇ γ̇ = 0 and γ̇(1) ⊥ Tγ(1)N , we will use two di�erent kinds of variations:

1. For any smooth variation ϕs satisfying ϕs(1) = γ(1) for all s ∈ (−δ, δ) (and, therefore, X|t=1 =
0), the relation (9) gives: � 1

0

g
(
X,∇γ̇ γ̇

)
dt = 0.

As we mentioned in class any smooth vector �eld X along γ with X|t=0 = 0 and X|t=1 = 0 can
be written as the variation vector �eld at s = 0 of a smooth variation ϕs of γ �xing γ(0) and γ(1)
(this can be easily checked in local coordinates). Therefore, if χ : [0, 1] → [0,+∞) is a smooth
function with χ(0) = χ(1) = 0 and χ(t) > 0 for t ∈ (0, 1), choosing X(t) = χ(t)∇γ̇(t)γ̇(t) we
obtain � 1

0

χ(t)∥∇γ̇(t)γ̇(t)∥2 dt = 0,

i.e. (since γ̇ is smooth) that γ is a geodesic:

∇γ̇ γ̇ = 0. (10)
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2. Let ξ ∈ Tγ(1)N . We can extend (in a non-unique way) ξ to a vector �eld X along γ with
X|t=0 = 0 and such that X is supported only inside a neighborhood U of γ(1) covered by a
coordinate chart. It is easy to see (by transfering this problem on Rn via the local cooridnates
on U) that such an X can be expressed as the variation vector �eld of a smooth variation ϕs of

γ satisfying ϕs(0) = γ(0) and ϕs(1) ∈ N (with ∂ϕs(1)
∂s

|s=0 = ξ). Therefore, applying the relation
(9) and using (10) for the second term, we obtain

g
(
ξ, γ̇(1)

)
− 0 = 0.

Since this is true for any ξ ∈ Tγ(1)N , we infer that γ̇(1) ⊥ Tγ(1)N .

(b) Let us reparametrize γ, as before, so that ∥γ̇(t)∥ is constant in t ∈ [0, 1]. Our aim is to show
that, with this parametrization, we have for any t0 ∈ (0, 1) and any ξ ∈ Tγ(t0)N :

g
(
ξ,∇γ̇(t0)γ̇(t0)

)
= 0. (11)

Let ϕs : [0, 1] → N , s ∈ (−δ, δ) by a smooth variation of γ through curves that lie inside N ,
satisfying in addition

ϕs(0) = γ(0) and ϕs(1) = γ(1).

Our assumption that γ minimizes the length among such curves implies that

d

ds
ℓ(ϕs)

∣∣
s=0

= 0.

If X = ∂ϕs

∂s

∣∣
s=0

is the associated variation vector �eld along γ, the formula for the variation of the
length of γ becomes in this case: � 1

0

g
(
X,∇γ̇ γ̇

)
dt = 0. (12)

As before, we can easily see (by working, for instance, in local coordinates around each point in γ)
that, for any smooth vector �eld X along γ that satis�es

X|γ(0) = 0, X|γ(1) = 0 and X|γ(t) ∈ Tγ(t)N , (13)

there exists a (non-unique) smooth variation ϕs : [0, 1] → N , s ∈ (−δ, δ) of γ satisfying ϕs(0) = γ(0)
and ϕs(1) = γ(1). Therefore, (15) is true for any vector �eld X along γ satisfying (13).

We will now proceed to show that (15) implies that ∇γ̇ γ̇ is orthogonal to N . Assume, for the
sake of contradiction, that there exists a t0 ∈ (0, 1) and a ξ ∈ Tγ(t0)N such that

g(ξ,∇γ̇ γ̇|t=t0) ̸= 0.

Without loss of generality, we can assume that

g(ξ,∇γ̇ γ̇|t=t0) > 0. (14)

Let Y be a smooth vector �eld along γ which is an extension of ξ (i.e. Y |γ(t0) = ξ) and which is
tangent to N (i.e. Y |γ(t) ∈ Tγ(t)N for all t ∈ [0, 1]). Let ψ : [0, 1] → [0,+∞) be a smooth cut-o�
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function satisfying ψ(t0) = 1 and such that the support of ψ is inside a small enough neighborhood
of t0 so that

g(Y |γ(t),∇γ̇ γ̇(t)) > 0 for all t ∈ suppψ

(this is possible in view of (14) and the fact that Y and ∇γ̇ γ̇ are continuous vector �elds along γ).
Let us de�ne the vector �eld X along γ by

X|γ(t)
.
= ψ(t)Y |γ(t).

Notice that X satis�es (13). Moreover, since ψ ⩾ 0 and ψ(t0) = 1 > 0, the above condition implies
that � 1

0

g
(
X,∇γ̇ γ̇

)
dt > 0 (15)

which is a contradiction in view of (15). Therefore,

∇γ̇ γ̇(t) ⊥ Tγ(t)N for all t ∈ (0, 1)

which, in view of the continuity of ∇γ̇ γ̇, implies that ∇γ̇ γ̇(t) is orthogonal to Tγ(t)N for all t ∈ [0, 1].

6.4 (a) Let (H2, gH) be the Poincare half plane (see also Exercise 5.2): H
2 =

{
(x, y) ∈ R

2 : y > 0
}

and

gH =
dx2 + dy2

y2
.

Let also D2 be the unit disc in R2, equipped with the metric

gD = 4
dx2 + dy2(

1− x2 − y2
)2 .

Identifying R2 with C, show that the map Φ : D2 → H
2 given by

Φ(z) = −iz + 1

z − 1

is an isometry ((D2, gD) is known as the Poincaré disc; both (H2, gH) and (D2, gD) are
models for the hyperbolic plane).

(b) Let p be a point in the hyperbolic plane. Compute the metric in polar coordinates around
p. (Hint: Working in the Poincaré disc model, it su�ces to only consider the case when
p is at the origin, since any point p ∈ D

2 can be mapped to any other point in D2 via an
isometry. What are the geodesics in (D2, gD) emanating from the origin?)

(c) How is the round metric (S2, gS2) expressed in polar coordinates around a point p ∈ S
2?

Solution. (a) It is easy to check that the map Φ : D2 → H
2, (x, y) → (x̄, ȳ) =

(
2y

(x−1)2+y2
, 1−x2−y2

(x−1)2+y2

)
is 1-1, onto and bi-continuous. Moreover, we can calculate

Φ∗gH = Φ∗

(dx̄2 + dȳ2

ȳ2

)
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=

[
d
(

2y
(x−1)2+y2

)]2
+
[
d
(

1−x2−y2

(x−1)2+y2

)]2
(

1−x2−y2

(x−1)2+y2

)2
=

1(
1−x2−y2

(x−1)2+y2

)2
([ 2

(x− 1)2 + y2
dy − 4y

((x− 1)2 + y2)2
(
(x− 1)dx+ ydy

)]2

+
[
− 2

(x− 1)2 + y2
(
xdx+ ydy

)
− 2(1− x2 − y2)

((x− 1)2 + y2)2
(
(x− 1)dx+ ydy

)]2)

=
1(

1−x2−y2

(x−1)2+y2

)2
(

4(dx2 + dy2)

((x− 1)2 + y2)2

)

= gD.

Therefore, Φ is an isometry.

(b) As we saw in Exercise 5.2, the set of isometries of (H2, gH) contains all maps of the form
z → az+b

cz+d
, ad− bc > 0; therefore, for any p1, p2 ∈ H

2, there exists an isometry F : (H2, gH) → (H2, gH)
such that F (p1) = p2 (i.e. (H2, gH) is homogeneous). As a result, the metric gH expressed in polar
coordinates around a point p ∈ H

2 will have the same form independently of the chosen point p. For
this reason, we can choose to work with the point corresponding to the origin in (D2, gD).

Let us use the notation (x, y) and (r̄, θ̄) for the standard Cartesian and radial coordinates, re-
spectively, on R2 (so that r̄2 = x2 + y2 and tan θ̄ = y

x
). In the (x, y) coordinate system, the tangent

vectors e1 = ∂
∂x

∣∣∣
p
and e2 = ∂

∂y

∣∣∣
p
constitute an ortnormal basis of TpD

2 with respect to gD|p (since

(gD)ij|p = δij). Therefore, we can use the coordinates on TpD
2 with respect to (e1, e2) to construct a

normal coordinate system in a neighborhood of p = (0, 0) in (D2, gD) via the map expp; we will use
the notation (x1, x2) for this coordinate system and (r, θ) for the associated polar coordinates (so

that r2 = (x1)2 + (x2)2 and tan θ̄ = x2

x1 ). Notice that, since e1 =
∂
∂x

∣∣∣
p
and e2 =

∂
∂y

∣∣∣
p
, we have

∂

∂x1

∣∣∣
p
=

∂

∂x

∣∣∣
p

and
∂

∂x2

∣∣∣
p
=

∂

∂y

∣∣∣
p
. (16)

Moreover, in the (r, θ) coordinate system, the curves θ = const correspond to geodesic rays emanating
from p. Recall that, as we saw in class, the metric gD in polar coordinates takes the form

gD = dr2 +
(
b(r, θ)

)2
dθ2,

with limr→0 b(r, θ) = 0 and limr→0
b(r,θ)

r
= 1. Our aim is to express r, θ as functions of the background

coordinates r̄, θ̄ on D2 ⊂ R
2 and compute b(r, θ). To this end, we want to make use of the fact that

(D2, gD) expressed in the (r̄, θ̄) coordinate system is rotationally symmetric to infer that θ = θ̄ and
that r̄ and b are functions only of r̄ (and not of θ). Even though this statement should be intuitively
clear, let us try to set up this argument in detail.
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It is easy to verify that the geodesics of (D2, gD) emanating from the origin are straight line
segments in D2. Therefore, the curves {θ = const} are the same as the curves {θ̄ = const}, i.e. θ =
θ(r̄, θ̄) is a function only of θ̄. We will now show that this implies that θ = θ̄: The condition (16)
implies that the Jacobian matrix of the transformation matrix (x, y) → (x̄, ȳ) satis�es[

∂xx
1 ∂xx

2

∂yx
1 ∂yx

2

]
(x,y)→(0,0)−−−−−−→

[
1 0
0 1

]
.

Thus, using the fact that θ = Arctan(x
2

x1 ) and θ̄ = Arctan( y
x
), we infer that

lim
r̄→0

θ

θ̄
= 1.

The fact that θ = θ(θ̄) then implies that
θ = θ̄.

We will now seek an expression for r = r(r̄, θ̄). Recall that the point q in (D2, gD corresponding
to the polar coordinate pair (r, θ) is simply

q = expp

(
r cos θe1 + r sin θe2

)
.

In particular, for any ρ > 0, the set {r = ρ} in D is the images under expp of the set S
(p)
ρ = {v =

(v1, v2) ∈ TpD
2 : (v1)2+(v2)2 = ρ2} (where (v1, v2) are the coordinates of v in the orthonormal basis

{e1, e2} = {∂x|p, ∂y|p}). The following observation is crucial: In the (r̄, θ̄) coordinate system, the
metric gD takes the form

gD =
4

(1− r̄2)2
(
dr̄2 + r̄2dθ̄

)
, (17)

i.e. the coe�cients of the metric are independent of θ̄, hence the rotations Φλ : (r̄, θ̄) → (r̄, θ̄ + λ)
are isometries for gD. Using the fact that isometries map geodesics to geodesics (see Ex. 6.1), and
Φ∗|p maps Sρ to Sρ, we infer that, for any ρ > 0, the set {r = ρ} is invariant under the rotations
Φλ, λ ∈ R. Since these rotations also leave the circles {r̄ = const} invariant, we infer that the curves
{r = const} and {r̄ = const} are the same, i.e. r is a function only of r̄. Therefore, since r = r(r̄)
and θ = θ̄, in the (r, θ) coordinate system the isometries Φλ also take the form (r, θ) → (r, θ+λ); we
deduce that, in the polar (r, θ) coordinate system, the coe�cients of gD should be independent of θ,
i.e. that b is a function only of r. Thus, we have the following expressions for gD in the coordinate
systems (r, θ) and (r̄, θ̄) = (r̄, θ):

gD = dr2 + (b(r))2dθ2 =
(dr
dr̄

)2
dr̄2 + (b(r))2dθ2

and, in view of (17):

gD =
4

(1− r̄2)2
(dr̄2 + r̄2dθ2).

We therefore infer that
dr

dr̄
=

2

1− r̄2
and b

(
r(r̄)

)
=

2r̄

1− r̄2
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from which we obtain

r(r̄) = log
(1 + r̄

1− r̄

)
and b(r) = sinh(r).

Thus, in polar coordinates (r, θ) around p = (0, 0), gD takes the form:

gD = dr2 + (sinh r)2dθ2.

Notice that (r, θ) ∈ (0,+∞)× [0, 2π) covers all of D2 \ 0.
(c) As in the case of the hyperbolic plane, the round sphere (S2, gS2 is homogenenous and, there-

fore, the metric expressed in polar coordinates around a point p ∈ S
2 will have the same form

independently of the choice of p; we can therefore choose p to be the north pole N). Recall that, in
stereographic coordinates from N (which parametrize S2 \ S by point on the plane R2, see Ex. 2.3),
the round metric gS2 takes the form

gS2 =
4

(1 + x2 + y2)2
(
dx2 + dy2

)
(wih (x, y) = (0, 0) corresponding to p and x2 + y2 → +∞ corresponding to N). In particular,
switching to radial coordinates (r̄, θ̄) on R2, we have

gS2 =
4

(1 + r̄2)2
(
dr̄2 + r̄2dθ̄2

)
. (18)

We immediately notice that geodesics emanating from p correspond, in the above coordinate system,
to straight lines θ̄ = const and that the metric gS2 is invariant under rotations (r̄, θ̄) → (r̄, θ̄ + λ).
Therefore, arguing exactly as in the case of the hyperbolic plance, we infer that the polar coordinate
system (r, θ) around p satis�es θ = θ̄ and r = r(r̄) and that b(r, θ) is a function of r only, i.e.

gS2 = dr2 + (b(r))2dθ2.

Comparing the above expression with (18), we deduce that

dr

dr̄
=

2

1 + r̄2
and b(r(r̄)) =

2r̄

1 + r̄2
,

i.e. that
r(r̄) = 2 arctan r̄ and b(r) = sin(r).

Thus,
gS2 = dr2 + sin2 rdθ2

and (r, θ) ∈ (0, π)× [0, 2π) covers S2 \ {N,S}
Remak. Notice the analogy with the corresponding expression for the hyperbolic metric.
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