

6.1 (*Naturality of the exponential map*). Let (M, g_M) and (N, g_N) be smooth Riemannian manifolds and let $\Phi : M \rightarrow N$ be an isometry. For any $p \in M$, prove that the following diagram is commutative:

$$\begin{array}{ccc} T_p M & \xrightarrow{d_p \Phi} & T_{\Phi(p)} N \\ \downarrow \exp_p & & \downarrow \exp_{\Phi(p)} \\ M & \xrightarrow{\Phi} & N \end{array} \quad (1)$$

Solution. We will first show that, if $\nabla^{(M)}$ and $\nabla^{(N)}$ are, respectively, the Levi-Civita connections of the metrics g_M and g_N , then Φ “commutes” with covariant differentiation, i.e. for any $X, Y \in \Gamma(M)$, we have

$$\Phi_* (\nabla_X^{(M)} Y) = \nabla_{\Phi_* X}^{(N)} (\Phi_* Y),$$

where $\Phi_*(W) = d\Phi(W)$ denotes the push-forward via the differential of Φ . The above is equivalent to the statement that, for any $X, Y, Z \in \Gamma(M)$: $X, Y \in \Gamma(M)$ and $W \in \Gamma(N)$:

$$g_N \left(\Phi_* (\nabla_X^{(M)} Y), W \right) = g_N \left(\nabla_{\Phi_* X}^{(N)} (\Phi_* Y), W \right),$$

which, since Φ is an isometry, can be reexpressed as follows (for $W = \Phi_* Z$ for any $Z \in \Gamma(M)$):

$$g_M \left(\nabla_X^{(M)} Y, Z \right) = g_N \left(\nabla_{\Phi_* X}^{(N)} (\Phi_* Y), \Phi_* Z \right). \quad (2)$$

In order to show (2), we will use the formula of Koszul

$$\begin{aligned} 2g(\nabla_U V, W) &= U(g(V, W)) + V(g(U, W)) - W(g(U, V)) \\ &\quad - g([V, W], U) - g([U, W], V) + g([U, V], W) \end{aligned} \quad (3)$$

expressing the Levi-Civita connection ∇ in terms of the corresponding metric g and use the fact that an isometry between two Riemannian manifolds should preserve the corresponding expressions for ∇ . More precisely, using (3) for $(g, U, V, W) = (g_M, X, Y, Z)$ and $(g, U, V, W) = (g_N, \Phi_* X, \Phi_* Y, \Phi_* Z)$ and noting that the corresponding right hand sides are equal since Φ is an isometry,¹ we infer that the left hand sides should also be the same (and thus (2) holds).

For any $p \in M$ and $v \in T_p M$, let $\gamma_{p,v}$ be the maximal geodesic of g_M satisfying $\gamma_{p,v}(0) = p$ and $\dot{\gamma}_{p,v}(0) = v$ (recall that the \exp_p map satisfies $\exp_p(v) = \gamma_{p,v}(1)$). We will use the notation $\tilde{\gamma}$ for the respective geodesics on (N, g_N) . The commutativity of the diagram (1) is then equivalent to the statement that, for any $p \in M$ and $v \in T_p M$:

$$\Phi(\gamma_{p,v}(1)) = \tilde{\gamma}_{\Phi(p), \Phi_*(v)}(1).$$

The above statement will follow if we show that the curve

$$\bar{\gamma} \doteq \Phi \circ \gamma_{p,v}$$

¹Here, we also use the fact that, more generally, for any smooth map $\Phi : M \rightarrow N$, $\Phi_*([X, Y]) = [\Phi_* X, \Phi_* Y]$ and $(\Phi_* X)(f) = X(f \circ \Phi)$.

is a geodesic of $(\mathcal{N}, g_{\mathcal{N}})$ satisfying

$$\bar{\gamma}(0) = \Phi(p) \quad \text{and} \quad \dot{\bar{\gamma}}(0) = \Phi_* v \quad (4)$$

(since, in this case, the uniqueness theorem for the initial value problem for the geodesic equation would imply that $\bar{\gamma} = \tilde{\gamma}_{\Phi(p), \Phi_*(v)}$). The relations (4) follow easily from the definition of $\bar{\gamma}$; thus, it remains to show that $\bar{\gamma}$ is a geodesic, i.e.

$$\nabla_{\dot{\bar{\gamma}}}^{(\mathcal{N})} \dot{\bar{\gamma}} = 0.$$

We can readily compute using (2):

$$\nabla_{\dot{\bar{\gamma}}}^{(\mathcal{N})} \dot{\bar{\gamma}} = \nabla_{\Phi_* \dot{\gamma}_{p,v}}^{(\mathcal{N})} (\Phi_* \dot{\gamma}_{p,v}) = \Phi_* \left(\nabla_{\dot{\gamma}_{p,v}}^{(\mathcal{M})} \dot{\gamma}_{p,v} \right) = 0$$

(since $\gamma_{p,v}$ is a geodesic).

6.2 Let (\mathcal{M}, g) be a smooth *connected* Riemannian manifold.

(a) Suppose that $\Phi_1, \Phi_2 : \mathcal{M} \rightarrow \mathcal{M}$ are two isometries such that, for some $p \in \mathcal{M}$:

$$\Phi_1(p) = \Phi_2(p) \quad \text{and} \quad d_p \Phi_1 = d_p \Phi_2.$$

Prove that $\Phi_1 = \Phi_2$.

(b) Let $X \in \Gamma(\mathcal{M})$ be a Killing vector field of (\mathcal{M}, g) for which there exists a point $p \in \mathcal{M}$ such that

$$X|_p = 0, \quad \nabla X|_p = 0.$$

Prove that $X = 0$.

Solution. (a) Let $\mathcal{K} \subset \mathcal{M}$ be the set of points $q \in \mathcal{M}$ such that $\Phi_1(q) = \Phi_2(q)$ and $d_q \Phi_1 = d_q \Phi_2$. We want to show that $\mathcal{K} = \mathcal{M}$. To this end, since \mathcal{M} is connected, it suffices to show that \mathcal{K} is a non-empty, open and closed subset of \mathcal{M} . Since $p \in \mathcal{K}$, we already know that $\mathcal{K} \neq \emptyset$; moreover, since Φ_1, Φ_2 are smooth maps, \mathcal{K} is a closed set. Therefore, it only remains to show that \mathcal{K} is an open subset of \mathcal{M} . Without loss of generality, we will assume that

$$\Phi_2 = \text{Id}$$

(since, otherwise, we can compare the maps $\Phi_1 \circ \Phi_2^{-1}$ and Id in place of Φ_1 and Φ_2).

Let $q \in \mathcal{K}$ and $v \in T_q \mathcal{M}$ be such that v belongs to the domain of definition of \exp_q . Using Ex. 6.1, the assumption that Φ_1 is an isometry of (\mathcal{M}, g) implies that

$$\Phi_1(\exp_q(v)) = \exp_{\Phi_1(q)}(d_q \Phi_1(v)).$$

Our assumption that $q \in \mathcal{K}$ (and $\Phi_2 = \text{Id}$) implies that $\Phi_1(q) = q$ and $d_q \Phi_1(v) = v$; therefore,

$$\Phi_1(\exp_q(v)) = \exp_q(v).$$

Therefore, we infer that

$$\Phi_1(z) = z \quad \text{for all } z \text{ in the image of } \exp_q : \Omega_q \subset T_q \mathcal{M} \rightarrow \mathcal{M}.$$

In view of the fact that \exp_q is a local diffeomorphism around $0 \in T_q \mathcal{M}$, we deduce that

$$\Phi_1(z) = z \quad \text{for all } z \text{ in an open neighborhood } \mathcal{U} \text{ of } q.$$

As a consequence, $d_z \Phi_1 = \text{Id}$ for all $z \in \mathcal{U}$ and, therefore, $\mathcal{U} \subset \mathcal{K}$. Since \mathcal{K} contains an open neighborhood around each of its points, we infer that \mathcal{K} is an open subset of \mathcal{M} . Thus, $\mathcal{K} = \mathcal{M}$.

(b) Let us define similarly as before \mathcal{K} to be the subset of \mathcal{M} on which $X = 0$ and $\nabla X = 0$; since \mathcal{K} is clearly non-empty (p belongs to K) and closed (since X is a smooth vector field), it suffices to show that \mathcal{K} is open.

Let q be a point in \mathcal{K} and let \mathcal{U} be an open neighborhood of q in \mathcal{M} and $\delta > 0$ such that the flow map $\Phi_t : \mathcal{U} \rightarrow \mathcal{M}$ of X is defined for $t \in (-\delta, \delta)$. Recall that that, for any $z \in \mathcal{U}$, the integral curve $t \rightarrow \Phi_t(z)$ of X is the unique solution of the initial value problem

$$\begin{cases} \frac{d}{dt}(\Phi_t(z)) = X|_{\Phi_t(z)}, \\ \Phi_0(z) = z. \end{cases} \quad (5)$$

Moreover, Φ_t is a semigroup in the following sense: For any $t_1, t_2 \in (-\delta, \delta)$ such that $t_1 + t_2 \in (-\delta, \delta)$ and any $z \in \mathcal{U}$, we have

$$\Phi_{t_1+t_2}(z) = \Phi_{t_1}(\Phi_{t_2}(z)) = \Phi_{t_2}(\Phi_{t_1}(z)). \quad (6)$$

Using the formula for the derivative of the composition of two functions, we can compute that the differential of Φ_t satisfies for any $z \in \mathcal{U}$ and $v \in T_z \mathcal{M}$:

$$d_z \Phi_{t_1+t_2}(v) = d_{\Phi_{t_2}(z)} \Phi_{t_1} (d_z \Phi_{t_2}(v)). \quad (7)$$

Note also that our assumption that X is Killing is equivalent to the statement that $\Phi_t : \mathcal{U} \rightarrow \Phi_t(\mathcal{U}) \subset \mathcal{M}$ is an isometry for all $t \in (-\delta, \delta)$.

Since $X|_q = 0$, we deduce that

$$\Phi_t(q) = q \quad \text{for all } t \in (-\delta, \delta)$$

(it is easy to check that the constant curve $t \rightarrow q$ satisfies (5)). Therefore, the pushforward map $d_q \Phi_t = (\Phi_t)_*|_q$ maps $T_q \mathcal{M}$ to $T_q \mathcal{M}$. Using the definition of the Lie derivative of X , we can readily calculate that, for any $Y \in \Gamma(\mathcal{M})$:

$$\begin{aligned} \mathcal{L}_X Y|_q &= \lim_{\tau \rightarrow 0} \left(\frac{1}{\tau} (d_{\Phi_\tau(q)} \Phi_{-\tau}(Y|_{\Phi_\tau(q)}) - Y|_q) \right) \\ &= \lim_{\tau \rightarrow 0} \left(\frac{1}{\tau} (d_q \Phi_{-\tau}(Y|_q) - Y|_q) \right) \\ &= \left(\frac{d}{dt} (d_q \Phi_{-t})|_{t=0} \right) Y|_q. \end{aligned}$$

Recall that $\mathcal{L}_X Y = [X, Y] = \nabla_X Y - \nabla_Y X$ (the last equality following from the fact that the Levi-Civita connection of g is torsion-free). Since $q \in \mathcal{K}$ and, therefore, $X|_q = 0$ and $\nabla_Y X|_q = 0$, we infer that $\mathcal{L}_X Y|_q = 0$ and, thus,

$$\left(\frac{d}{dt} (d_q \Phi_t) \Big|_{t=0} \right) v = 0 \quad \text{for all } v \in T_q \mathcal{M}. \quad (8)$$

Using the identity (7) for $z = q$, we obtain (since $\Phi_{t_2}(q) = q$):

$$d_q \Phi_{t_1+t_2}(v) = d_q \Phi_{t_1} (d_q \Phi_{t_2}(v)).$$

Differentiating the above relation with respect to t_1 and then setting $t_1 = 0$ and $t_2 = t$, we obtain for any $t \in (-\delta, \delta)$ and $v \in T_q \mathcal{M}$:

$$\frac{d}{d\tau} (d_q \Phi_\tau) \Big|_{\tau=t}(v) = \frac{d}{d\tau} (d_q \Phi_\tau) \Big|_{\tau=0} (d_q \Phi_t(v)).$$

Therefore, using (8) for the right hand side, we infer that, for any $t \in (-\delta, \delta)$:

$$\left(\frac{d}{d\tau} (d_q \Phi_\tau) \Big|_{\tau=t} \right) v = 0 \quad \text{for all } v \in T_q \mathcal{M}.$$

Therefore, integrating the above equation in t and using the fact that $d_q \Phi_0 = \text{Id}$, we obtain

$$d_q \Phi_t = \text{Id} \quad \text{for all } t \in (-\delta, \delta)$$

Therefore, in view of the fact that $\Phi_t : \mathcal{U} \rightarrow \Phi_t(\mathcal{U}) \subset \mathcal{M}$ is an isometry, arguing as in the proof of part (a) (namely noticing that the image of the exponential map \exp_q is fixed under the action of Φ_t) we infer that $\Phi_t(z) = z$ for z in an open neighborhood \mathcal{V} of q for all $t \in (-\delta, \delta)$. Therefore, the vector field X also vanishes on \mathcal{V} , proving that $\mathcal{V} \subset \mathcal{K}$. Therefore, \mathcal{K} is open.

6.3 Let (\mathcal{M}, g) be a connected Riemannian manifold, and let $N \subset \mathcal{M}$ be a smooth submanifold of \mathcal{M} .

(a) For any $p \in \mathcal{M}$, we will define the distance of p from N to be

$$d(p, N) = \inf \{ \ell(\gamma) : \gamma : [0, 1] \rightarrow \mathcal{M} \text{ is a } C^1 \text{ curve, } \gamma(0) = p, \gamma(1) \in N \}.$$

Assume that, for a given $p \in \mathcal{M}$, a minimizer for $d(p, N)$ exists, i.e. there exists a C^1 curve $\gamma : [0, 1] \rightarrow \mathcal{M}$ such that $\gamma(0) = p$, $\gamma(1) \in N$ and

$$\ell(\gamma) = d(p, N).$$

Show that γ is a geodesic of (\mathcal{M}, g) and $\dot{\gamma}(1)$ is normal to $T_q N$.

(b) Let q_1, q_2 be two points on \mathcal{N} and let $\gamma : [0, 1] \rightarrow \mathcal{N}$ be a C^1 curve such that $\gamma(0) = q_1$, $\gamma(1) = q_2$ and $\ell(\gamma)$ is minimal among all curves connecting q_1 to q_2 in \mathcal{N} , i.e.

$$\ell(\gamma) = \min \{ \ell(\bar{\gamma}) : \bar{\gamma} : [0, 1] \rightarrow \mathcal{N}, \bar{\gamma}(0) = q_1, \bar{\gamma}(1) = q_2 \}$$

Prove that, for any $t \in [0, 1]$, there exists a parametrization of γ for which

$$\nabla_{\dot{\gamma}(t)} \dot{\gamma}(t) \text{ is orthogonal to } T_{\gamma(t)} \mathcal{N} \subset T_{\gamma(t)} \mathcal{M}$$

(where ∇ is the Levi-Civita connection of (\mathcal{M}, g)).

Solution. (a) By reparametrizing the curve γ , we can assume without loss of generality that $\|\dot{\gamma}\|$ is constant in t . Let $\phi_s : [0, 1] \rightarrow \mathcal{M}$, $s \in (-\delta, \delta)$ be a smooth variation of γ (i.e. $\phi_0(t) = \gamma(t)$) such that $\phi_s(0) = \gamma(0) = p$ and $\phi_s(1) \in \mathcal{N}$ for all $s \in (-\delta, \delta)$. Let also $X = \frac{\partial \phi_s}{\partial s} \Big|_{s=0}$ be the variation vector field along γ . Note that our assumptions on ϕ_s imply that

$$X|_{t=0} = 0 \quad \text{and} \quad X|_{t=1} \in T_{\gamma(1)} \mathcal{N}.$$

Moreover, our assumption that γ minimizes the length among all curves connecting q to \mathcal{N} implies that

$$\frac{d}{ds} \ell(\phi_s) \Big|_{s=0} = 0.$$

Using the formula for the variation of the length, we obtain:

$$\frac{1}{\ell(\gamma)} \left(g(X, \dot{\gamma}(t)) \Big|_{t=0}^1 - \int_0^1 g(X, \nabla_{\dot{\gamma}} \dot{\gamma}) dt \right) = 0$$

and, therefore (since $X|_{t=0} = 0$):

$$g(X|_{t=1}, \dot{\gamma}(1)) - \int_0^1 g(X, \nabla_{\dot{\gamma}} \dot{\gamma}) dt = 0. \quad (9)$$

In order to show that $\nabla_{\dot{\gamma}} \dot{\gamma} = 0$ and $\dot{\gamma}(1) \perp T_{\gamma(1)} \mathcal{N}$, we will use two different kinds of variations:

1. For any smooth variation ϕ_s satisfying $\phi_s(1) = \gamma(1)$ for all $s \in (-\delta, \delta)$ (and, therefore, $X|_{t=1} = 0$), the relation (9) gives:

$$\int_0^1 g(X, \nabla_{\dot{\gamma}} \dot{\gamma}) dt = 0.$$

As we mentioned in class *any* smooth vector field X along γ with $X|_{t=0} = 0$ and $X|_{t=1} = 0$ can be written as the variation vector field at $s = 0$ of a smooth variation ϕ_s of γ fixing $\gamma(0)$ and $\gamma(1)$ (this can be easily checked in local coordinates). Therefore, if $\chi : [0, 1] \rightarrow [0, +\infty)$ is a smooth function with $\chi(0) = \chi(1) = 0$ and $\chi(t) > 0$ for $t \in (0, 1)$, choosing $X(t) = \chi(t) \nabla_{\dot{\gamma}(t)} \dot{\gamma}(t)$ we obtain

$$\int_0^1 \chi(t) \|\nabla_{\dot{\gamma}(t)} \dot{\gamma}(t)\|^2 dt = 0,$$

i.e. (since $\dot{\gamma}$ is smooth) that γ is a geodesic:

$$\nabla_{\dot{\gamma}} \dot{\gamma} = 0. \quad (10)$$

2. Let $\xi \in T_{\gamma(1)}\mathcal{N}$. We can extend (in a non-unique way) ξ to a vector field X along γ with $X|_{t=0} = 0$ and such that X is supported only inside a neighborhood \mathcal{U} of $\gamma(1)$ covered by a coordinate chart. It is easy to see (by transferring this problem on \mathbb{R}^n via the local coordinates on \mathcal{U}) that such an X can be expressed as the variation vector field of a smooth variation ϕ_s of γ satisfying $\phi_s(0) = \gamma(0)$ and $\phi_s(1) \in \mathcal{N}$ (with $\frac{\partial \phi_s(1)}{\partial s}|_{s=0} = \xi$). Therefore, applying the relation (9) and using (10) for the second term, we obtain

$$g(\xi, \dot{\gamma}(1)) = 0.$$

Since this is true for any $\xi \in T_{\gamma(1)}\mathcal{N}$, we infer that $\dot{\gamma}(1) \perp T_{\gamma(1)}\mathcal{N}$.

(b) Let us reparametrize γ , as before, so that $\|\dot{\gamma}(t)\|$ is constant in $t \in [0, 1]$. Our aim is to show that, with this parametrization, we have for any $t_0 \in (0, 1)$ and any $\xi \in T_{\gamma(t_0)}\mathcal{N}$:

$$g(\xi, \nabla_{\dot{\gamma}(t_0)} \dot{\gamma}(t_0)) = 0. \quad (11)$$

Let $\phi_s : [0, 1] \rightarrow \mathcal{N}$, $s \in (-\delta, \delta)$ by a smooth variation of γ through curves that lie inside \mathcal{N} , satisfying in addition

$$\phi_s(0) = \gamma(0) \quad \text{and} \quad \phi_s(1) = \gamma(1).$$

Our assumption that γ minimizes the length among such curves implies that

$$\frac{d}{ds} \ell(\phi_s)|_{s=0} = 0.$$

If $X = \frac{\partial \phi_s}{\partial s}|_{s=0}$ is the associated variation vector field along γ , the formula for the variation of the length of γ becomes in this case:

$$\int_0^1 g(X, \nabla_{\dot{\gamma}} \dot{\gamma}) dt = 0. \quad (12)$$

As before, we can easily see (by working, for instance, in local coordinates around each point in γ) that, for any smooth vector field X along γ that satisfies

$$X|_{\gamma(0)} = 0, \quad X|_{\gamma(1)} = 0 \quad \text{and} \quad X|_{\gamma(t)} \in T_{\gamma(t)}\mathcal{N}, \quad (13)$$

there exists a (non-unique) smooth variation $\phi_s : [0, 1] \rightarrow \mathcal{N}$, $s \in (-\delta, \delta)$ of γ satisfying $\phi_s(0) = \gamma(0)$ and $\phi_s(1) = \gamma(1)$. Therefore, (15) is true for any vector field X along γ satisfying (13).

We will now proceed to show that (15) implies that $\nabla_{\dot{\gamma}} \dot{\gamma}$ is orthogonal to \mathcal{N} . Assume, for the sake of contradiction, that there exists a $t_0 \in (0, 1)$ and a $\xi \in T_{\gamma(t_0)}\mathcal{N}$ such that

$$g(\xi, \nabla_{\dot{\gamma}} \dot{\gamma}|_{t=t_0}) \neq 0.$$

Without loss of generality, we can assume that

$$g(\xi, \nabla_{\dot{\gamma}} \dot{\gamma}|_{t=t_0}) > 0. \quad (14)$$

Let Y be a smooth vector field along γ which is an extension of ξ (i.e. $Y|_{\gamma(t_0)} = \xi$) and which is tangent to \mathcal{N} (i.e. $Y|_{\gamma(t)} \in T_{\gamma(t)}\mathcal{N}$ for all $t \in [0, 1]$). Let $\psi : [0, 1] \rightarrow [0, +\infty)$ be a smooth cut-off

function satisfying $\psi(t_0) = 1$ and such that the support of ψ is inside a small enough neighborhood of t_0 so that

$$g(Y|_{\gamma(t)}, \nabla_{\dot{\gamma}}\dot{\gamma}(t)) > 0 \quad \text{for all } t \in \text{supp } \psi$$

(this is possible in view of (14) and the fact that Y and $\nabla_{\dot{\gamma}}\dot{\gamma}$ are continuous vector fields along γ). Let us define the vector field X along γ by

$$X|_{\gamma(t)} \doteq \psi(t)Y|_{\gamma(t)}.$$

Notice that X satisfies (13). Moreover, since $\psi \geq 0$ and $\psi(t_0) = 1 > 0$, the above condition implies that

$$\int_0^1 g(X, \nabla_{\dot{\gamma}}\dot{\gamma}) dt > 0 \quad (15)$$

which is a contradiction in view of (15). Therefore,

$$\nabla_{\dot{\gamma}}\dot{\gamma}(t) \perp T_{\gamma(t)}\mathcal{N} \quad \text{for all } t \in (0, 1)$$

which, in view of the continuity of $\nabla_{\dot{\gamma}}\dot{\gamma}$, implies that $\nabla_{\dot{\gamma}}\dot{\gamma}(t)$ is orthogonal to $T_{\gamma(t)}\mathcal{N}$ for all $t \in [0, 1]$.

6.4 (a) Let $(\mathbb{H}^2, g_{\mathbb{H}})$ be the Poincaré half plane (see also Exercise 5.2): $\mathbb{H}^2 = \{(x, y) \in \mathbb{R}^2 : y > 0\}$ and

$$g_{\mathbb{H}} = \frac{dx^2 + dy^2}{y^2}.$$

Let also \mathbb{D}^2 be the unit disc in \mathbb{R}^2 , equipped with the metric

$$g_{\mathbb{D}} = 4 \frac{dx^2 + dy^2}{(1 - x^2 - y^2)^2}.$$

Identifying \mathbb{R}^2 with \mathbb{C} , show that the map $\Phi : \mathbb{D}^2 \rightarrow \mathbb{H}^2$ given by

$$\Phi(z) = -i \frac{z+1}{z-1}$$

is an isometry ($(\mathbb{D}^2, g_{\mathbb{D}})$ is known as the *Poincaré disc*; both $(\mathbb{H}^2, g_{\mathbb{H}})$ and $(\mathbb{D}^2, g_{\mathbb{D}})$ are models for the hyperbolic plane).

(b) Let p be a point in the hyperbolic plane. Compute the metric in polar coordinates around p . (*Hint: Working in the Poincaré disc model, it suffices to only consider the case when p is at the origin, since any point $p \in \mathbb{D}^2$ can be mapped to any other point in \mathbb{D}^2 via an isometry. What are the geodesics in $(\mathbb{D}^2, g_{\mathbb{D}})$ emanating from the origin?*)

(c) How is the round metric $(\mathbb{S}^2, g_{\mathbb{S}^2})$ expressed in polar coordinates around a point $p \in \mathbb{S}^2$?

Solution. (a) It is easy to check that the map $\Phi : \mathbb{D}^2 \rightarrow \mathbb{H}^2$, $(x, y) \rightarrow (\bar{x}, \bar{y}) = \left(\frac{2y}{(x-1)^2 + y^2}, \frac{1-x^2-y^2}{(x-1)^2 + y^2} \right)$ is 1-1, onto and bi-continuous. Moreover, we can calculate

$$\Phi_* g_{\mathbb{H}} = \Phi_* \left(\frac{d\bar{x}^2 + d\bar{y}^2}{\bar{y}^2} \right)$$

$$\begin{aligned}
&= \frac{\left[d\left(\frac{2y}{(x-1)^2+y^2}\right)\right]^2 + \left[d\left(\frac{1-x^2-y^2}{(x-1)^2+y^2}\right)\right]^2}{\left(\frac{1-x^2-y^2}{(x-1)^2+y^2}\right)^2} \\
&= \frac{1}{\left(\frac{1-x^2-y^2}{(x-1)^2+y^2}\right)^2} \left(\left[\frac{2}{(x-1)^2+y^2} dy - \frac{4y}{((x-1)^2+y^2)^2} ((x-1)dx+ydy) \right]^2 \right. \\
&\quad \left. + \left[-\frac{2}{(x-1)^2+y^2} (xdx+ydy) - \frac{2(1-x^2-y^2)}{((x-1)^2+y^2)^2} ((x-1)dx+ydy) \right]^2 \right) \\
&= \frac{1}{\left(\frac{1-x^2-y^2}{(x-1)^2+y^2}\right)^2} \left(\frac{4(dx^2+dy^2)}{((x-1)^2+y^2)^2} \right) \\
&= g_{\mathbb{D}}.
\end{aligned}$$

Therefore, Φ is an isometry.

(b) As we saw in Exercise 5.2, the set of isometries of $(\mathbb{H}^2, g_{\mathbb{H}})$ contains all maps of the form $z \rightarrow \frac{az+b}{cz+d}$, $ad - bc > 0$; therefore, for any $p_1, p_2 \in \mathbb{H}^2$, there exists an isometry $F : (\mathbb{H}^2, g_{\mathbb{H}}) \rightarrow (\mathbb{H}^2, g_{\mathbb{H}})$ such that $F(p_1) = p_2$ (i.e. $(\mathbb{H}^2, g_{\mathbb{H}})$ is *homogeneous*). As a result, the metric $g_{\mathbb{H}}$ expressed in polar coordinates around a point $p \in \mathbb{H}^2$ will have the same form independently of the chosen point p . For this reason, we can choose to work with the point corresponding to the origin in $(\mathbb{D}^2, g_{\mathbb{D}})$.

Let us use the notation (x, y) and $(\bar{r}, \bar{\theta})$ for the standard Cartesian and radial coordinates, respectively, on \mathbb{R}^2 (so that $\bar{r}^2 = x^2 + y^2$ and $\tan \bar{\theta} = \frac{y}{x}$). In the (x, y) coordinate system, the tangent vectors $e_1 = \frac{\partial}{\partial x} \Big|_p$ and $e_2 = \frac{\partial}{\partial y} \Big|_p$ constitute an orthonormal basis of $T_p \mathbb{D}^2$ with respect to $g_{\mathbb{D}}|_p$ (since $(g_{\mathbb{D}})_{ij}|_p = \delta_{ij}$). Therefore, we can use the coordinates on $T_p \mathbb{D}^2$ with respect to (e_1, e_2) to construct a normal coordinate system in a neighborhood of $p = (0, 0)$ in $(\mathbb{D}^2, g_{\mathbb{D}})$ via the map \exp_p ; we will use the notation (x^1, x^2) for this coordinate system and (r, θ) for the associated polar coordinates (so that $r^2 = (x^1)^2 + (x^2)^2$ and $\tan \bar{\theta} = \frac{x^2}{x^1}$). Notice that, since $e_1 = \frac{\partial}{\partial x} \Big|_p$ and $e_2 = \frac{\partial}{\partial y} \Big|_p$, we have

$$\frac{\partial}{\partial x^1} \Big|_p = \frac{\partial}{\partial x} \Big|_p \quad \text{and} \quad \frac{\partial}{\partial x^2} \Big|_p = \frac{\partial}{\partial y} \Big|_p. \quad (16)$$

Moreover, in the (r, θ) coordinate system, the curves $\theta = \text{const}$ correspond to geodesic rays emanating from p . Recall that, as we saw in class, the metric $g_{\mathbb{D}}$ in polar coordinates takes the form

$$g_{\mathbb{D}} = dr^2 + (b(r, \theta))^2 d\theta^2,$$

with $\lim_{r \rightarrow 0} b(r, \theta) = 0$ and $\lim_{r \rightarrow 0} \frac{b(r, \theta)}{r} = 1$. Our aim is to express r, θ as functions of the background coordinates $\bar{r}, \bar{\theta}$ on $\mathbb{D}^2 \subset \mathbb{R}^2$ and compute $b(r, \theta)$. To this end, we want to make use of the fact that $(\mathbb{D}^2, g_{\mathbb{D}})$ expressed in the $(\bar{r}, \bar{\theta})$ coordinate system is rotationally symmetric to infer that $\theta = \bar{\theta}$ and that \bar{r} and b are functions only of \bar{r} (and not of θ). Even though this statement should be intuitively clear, let us try to set up this argument in detail.

It is easy to verify that the geodesics of $(\mathbb{D}^2, g_{\mathbb{D}})$ emanating from the origin are straight line segments in \mathbb{D}^2 . Therefore, the curves $\{\theta = \text{const}\}$ are the same as the curves $\{\bar{\theta} = \text{const}\}$, i.e. $\theta = \theta(\bar{r}, \bar{\theta})$ is a function *only* of $\bar{\theta}$. We will now show that this implies that $\theta = \bar{\theta}$: The condition (16) implies that the Jacobian matrix of the transformation matrix $(x, y) \rightarrow (\bar{x}, \bar{y})$ satisfies

$$\begin{bmatrix} \partial_x x^1 & \partial_x x^2 \\ \partial_y x^1 & \partial_y x^2 \end{bmatrix} \xrightarrow{(x,y) \rightarrow (0,0)} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}.$$

Thus, using the fact that $\theta = \text{Arctan}(\frac{x^2}{x^1})$ and $\bar{\theta} = \text{Arctan}(\frac{y}{x})$, we infer that

$$\lim_{\bar{r} \rightarrow 0} \frac{\theta}{\bar{\theta}} = 1.$$

The fact that $\theta = \theta(\bar{\theta})$ then implies that

$$\theta = \bar{\theta}.$$

We will now seek an expression for $r = r(\bar{r}, \bar{\theta})$. Recall that the point q in $(\mathbb{D}^2, g_{\mathbb{D}}$ corresponding to the polar coordinate pair (r, θ) is simply

$$q = \exp_p(r \cos \theta e_1 + r \sin \theta e_2).$$

In particular, for any $\rho > 0$, the set $\{r = \rho\}$ in \mathbb{D} is the images under \exp_p of the set $S_{\rho}^{(p)} = \{v = (v^1, v^2) \in T_p \mathbb{D}^2 : (v^1)^2 + (v^2)^2 = \rho^2\}$ (where (v^1, v^2) are the coordinates of v in the orthonormal basis $\{e_1, e_2\} = \{\partial_x|_p, \partial_y|_p\}$). The following observation is crucial: In the $(\bar{r}, \bar{\theta})$ coordinate system, the metric $g_{\mathbb{D}}$ takes the form

$$g_{\mathbb{D}} = \frac{4}{(1 - \bar{r}^2)^2} (d\bar{r}^2 + \bar{r}^2 d\bar{\theta}), \quad (17)$$

i.e. the coefficients of the metric are *independent* of $\bar{\theta}$, hence the rotations $\Phi_{\lambda} : (\bar{r}, \bar{\theta}) \rightarrow (\bar{r}, \bar{\theta} + \lambda)$ are *isometries* for $g_{\mathbb{D}}$. Using the fact that isometries map geodesics to geodesics (see Ex. 6.1), and $\Phi_*|_p$ maps S_{ρ} to S_{ρ} , we infer that, for any $\rho > 0$, the set $\{r = \rho\}$ is invariant under the rotations Φ_{λ} , $\lambda \in \mathbb{R}$. Since these rotations also leave the circles $\{\bar{r} = \text{const}\}$ invariant, we infer that the curves $\{r = \text{const}\}$ and $\{\bar{r} = \text{const}\}$ are the same, i.e. r is a function only of \bar{r} . Therefore, since $r = r(\bar{r})$ and $\theta = \bar{\theta}$, in the (r, θ) coordinate system the isometries Φ_{λ} also take the form $(r, \theta) \rightarrow (r, \theta + \lambda)$; we deduce that, in the polar (r, θ) coordinate system, the coefficients of $g_{\mathbb{D}}$ should be independent of θ , i.e. that b is a function only of r . Thus, we have the following expressions for $g_{\mathbb{D}}$ in the coordinate systems (r, θ) and $(\bar{r}, \bar{\theta}) = (\bar{r}, \theta)$:

$$g_{\mathbb{D}} = dr^2 + (b(r))^2 d\theta^2 = \left(\frac{dr}{d\bar{r}}\right)^2 d\bar{r}^2 + (b(r))^2 d\theta^2$$

and, in view of (17):

$$g_{\mathbb{D}} = \frac{4}{(1 - \bar{r}^2)^2} (d\bar{r}^2 + \bar{r}^2 d\theta^2).$$

We therefore infer that

$$\frac{dr}{d\bar{r}} = \frac{2}{1 - \bar{r}^2} \quad \text{and} \quad b(r(\bar{r})) = \frac{2\bar{r}}{1 - \bar{r}^2}$$

from which we obtain

$$r(\bar{r}) = \log \left(\frac{1 + \bar{r}}{1 - \bar{r}} \right) \quad \text{and} \quad b(r) = \sinh(r).$$

Thus, in polar coordinates (r, θ) around $p = (0, 0)$, $g_{\mathbb{D}}$ takes the form:

$$g_{\mathbb{D}} = dr^2 + (\sinh r)^2 d\theta^2.$$

Notice that $(r, \theta) \in (0, +\infty) \times [0, 2\pi)$ covers all of $\mathbb{D}^2 \setminus 0$.

(c) As in the case of the hyperbolic plane, the round sphere $(\mathbb{S}^2, g_{\mathbb{S}^2})$ is homogenous and, therefore, the metric expressed in polar coordinates around a point $p \in \mathbb{S}^2$ will have the same form independently of the choice of p ; we can therefore choose p to be the north pole N . Recall that, in stereographic coordinates from N (which parametrize $\mathbb{S}^2 \setminus S$ by points on the plane \mathbb{R}^2 , see Ex. 2.3), the round metric $g_{\mathbb{S}^2}$ takes the form

$$g_{\mathbb{S}^2} = \frac{4}{(1 + x^2 + y^2)^2} (dx^2 + dy^2)$$

(with $(x, y) = (0, 0)$ corresponding to p and $x^2 + y^2 \rightarrow +\infty$ corresponding to N). In particular, switching to radial coordinates $(\bar{r}, \bar{\theta})$ on \mathbb{R}^2 , we have

$$g_{\mathbb{S}^2} = \frac{4}{(1 + \bar{r}^2)^2} (d\bar{r}^2 + \bar{r}^2 d\bar{\theta}^2). \quad (18)$$

We immediately notice that geodesics emanating from p correspond, in the above coordinate system, to straight lines $\bar{\theta} = \text{const}$ and that the metric $g_{\mathbb{S}^2}$ is invariant under rotations $(\bar{r}, \bar{\theta}) \rightarrow (\bar{r}, \bar{\theta} + \lambda)$. Therefore, arguing exactly as in the case of the hyperbolic plane, we infer that the polar coordinate system (r, θ) around p satisfies $\theta = \bar{\theta}$ and $r = r(\bar{r})$ and that $b(r, \theta)$ is a function of r only, i.e.

$$g_{\mathbb{S}^2} = dr^2 + (b(r))^2 d\theta^2.$$

Comparing the above expression with (18), we deduce that

$$\frac{dr}{d\bar{r}} = \frac{2}{1 + \bar{r}^2} \quad \text{and} \quad b(r(\bar{r})) = \frac{2\bar{r}}{1 + \bar{r}^2},$$

i.e. that

$$r(\bar{r}) = 2 \arctan \bar{r} \quad \text{and} \quad b(r) = \sin(r).$$

Thus,

$$g_{\mathbb{S}^2} = dr^2 + \sin^2 r d\theta^2$$

and $(r, \theta) \in (0, \pi) \times [0, 2\pi)$ covers $\mathbb{S}^2 \setminus \{N, S\}$

Remark. Notice the analogy with the corresponding expression for the hyperbolic metric.